
International Journal of Theoretical Physics, 1Iol. 20, No. 9, 1981 

Some Cylindrical Symmetric Nonstatic Perfect 
Fluid Distributions in General Relativity 

with Pressure E tual to Density 

S. R. Roy and S. Narain 

Department of Mathematics, Banaras Hindu University, Varanasi 221005, India 

Received October 9, 1980 

In this paper we have derived some models of cylindrical symmetry  in which 
source of gravitational field is perfect fluid with pressure equal to energy density. 

1. INTRODUCTION 

Plane symmetric space-times representing distributions of perfect fluid 
with isentropic flow was discussed in detail by Taub (1956). Nonstatic 
solutions of plane symmetry are particularly interesting as they may repre- 
sent galaxies which by and large exhibit plane symmetry. Tabensky and 
Taub (1973) have discussed plane-symmetric distributions of perfect fluid 
with irrotational flow which satisfy the equation of state P =P. This latter 
condition is satisfied in the case of a relativistic degenerate Fermi gas or in 
the case of neutron stars having very dense baryon matter (Zeldovich and 
Novikov, 1971; Walecka, 1974). Further work in this field was done by 
Letelier (1975, 1979), Letelier and Tabensky (1975), and Singh and Yadava 
(1978) in the case of cylindrical symmetry. In the present paper we have 
obtained a few solutions with the above equation of state in the case of the 
Marder metric which is of cylindrical symmetry. 

We consider the metric in the form 

ds 2 = A 2 (  d t  2 - d x  2 ) - -B 2 d y  2 - c z d z  2 (1) 

where the metric potentials are functions of x and t alone. The energy- 
momentum tensor for perfect fluid distribution is given by 

Zij = ( p + p  ) v i vj  - -Pgi j  (2) 
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together with 

giJ1)i1)j= 1 

p being the density, p the pressure, and 
equations to be satisfied are 

-- 8q,rTij = Rij -- �89 

Equations (2) and (4) for metric (1) lead to 

t)2 =1)3 =0 
The field equations (4) lead to 

.,c _24 4 ] 
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(3) 

v i the flow vector. The field 

(4) 

(5) 

C44 A I [ B  1 CI )A4 ( B4 C4) 
C A [ - Y + T  --h-- -ff+~- 

(6) 

B44 Bll ] 
B B (7) 

C44 Cll ] 
C C ] (8) 

_ 8 ~r [ , p +p ) v,~ _pA2 ] = [ _B~_ _~ Ci A1A ( -~ ~- --c ) ~ A4 ( O4-ff'-~ ~ C4 ) 

glfl-B4C4 ] 
+ -ff~ ] (9) 

--8'r/'[(P-~P)1)ID']=[-~- ~ AIA (B-~-T)- 04 C4 -A-- T C - A 4  ( Bl '~ Cl )] 

From equations (3), we have 

v~-1)~ =A 2 

(10) 

(ll) 

Suffixes 1 and 4 in the above equations after A, B, and C denote partial 
differentiation with respect to x and t, respectively. 
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2. SOLUTIONS OF THE FIELD EQUATIONS 

From equations (7) and (8) we have 

Bnv_ qv 
B C 

where 

u=~(x+ t )  

v = ~ ( x - t )  
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(12) 

(13) 

From equations (6), (9), and equation of state P =P we have 

2Bu~ + B~C~ +BvC. --V BC ---0 (14) 

From equations (6), (7), (9), (10), and (12) we have 

A n B  u C u A . B ~  C~, 

_ [ BuC~ + Bvq An 
BC - 2 (  ~-- ),j2 (15) t 

Case (a). Putting BC=lz and B / C = v ,  we get from equations (12) and 
(14), respectively, 

p, nVv +,~,, Vn 2(-~ )v+ #v =0 (16) 

F 

and 

[u. . . . \  [v..~ I~uVv +~vVu - 0  (17) 

From equations (16) and (17), we have 

#nv =0 (18) 
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which leads to 
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= [ (1 + a2/fl) _ 4/~2 d~2 (log A) ] 2 

Case (a.1). Let us assume that 

log 1,= ~J (u)  +O(v ) (20) 

From equations (16), (17), (19), and (20) we have 

~._ 0v_ 
a (21) 

fu go 

where a is constant. Integrating equations (21) we have 

logv=a(f-g)+b o (22) 

where b 0 is a constant. Arriving at A =A(#)  from equation (15), we have 

[2t~~2-(1-a21~2)-41x ff-~(logA)]• -(1-a2t*2)-41z ff-~(l~ 

(23) 

From equation (23) it is clear that (f.u/f 2) and (gvv/g 2) both should be 
constant. In particular we assume that 

fuu _ gvv =?~ (24) 
ig 

where ~ is a constant. From equations (19), (22), and (23) we have 

B=[_~_ [ V]a/x p ]1/2 
l-g) l~ ] (25) 

~--~) log --U--~ ] (26) 

i,=f(u)+g(v) (19) 
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where U--u+Uo, V=v+Vo, Uo, Vo, P, and Q' are constants. From equa- 
tions (23) and (24) we have 

d d 2 ] 
(27) 

where 

v=~(x+r) 
v=~(x-r) (30) 

Case (a.1.2). Taking the lower sign in (27), we get 

log--~-~ ] exp~ ~ ( X log -U-~) + log --u-~ + q' (31) 

where c and q' are constants. By suitable transformation the metric (1) 
reduces to the form 

2c [ a 2 1 P p ~2 p ,] ds2=(xlog-6-~) exp[q-(~log-6~ ) +log---~f f+q](dT2-dX 2) 

p V a/~. U '~/xdZ2] 

Two cases arise: 

Case (a. 1.1). Taking the upper sign in (27), we get 

1 p -'/~ f l [  ~llog_gp 
A= x l o g ~ T  exp l~  [~ ( X (28) 

where ~ and Q are constants. By suitable transformation the metric (1) 
reduces to the form 

ds a= x l o g - u ~  exp ~ ~-log--u--~ +log--u--~+Q ( d T 2 - d X  z) 

-- log --U-- ~ d y 2 + (  U ) dZ 2 (29) 
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Case  (a.2). Let us assume that 

p = ~ ( u )  

From equations (16) and (33), we have 

log 1)=/~-'/2[ F( u )+  G( v )] 

where F and G are arbitrary functions of u and v, 
equations (15), (33), and (34) we have 

/~u /~2 + 1)~-4""  (A ,  2 
7 7 = - - -~+4(A"7)  

We assume that 

From equations (35) and (36), we have 

4 ( ~-~-z~ ) v +'~Tv = --- [ u-~ ] 

Case  (a.2.1). Taking the upper sign in (37), we have 
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(33) 

(34) 

respectively. From 

(35)  

(36) 

(37) 

{) 2 
A u  Vu1)v _ 1)v (38) 

4 ~ "  v ~ I )2 p2 

From equations (33), (34), (36), and (38), we obtain 

~ = t  (39) % 

where l is a constant. Integrating equations (39) we have 

t ~ = e  t"+r (40) 

G =  - i e -{ t /Z)v+r,  (41) 

where l' and l" are constants. Hence from equations (33), (34), (40), and 
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(41), we get 

a~ ~ 
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(42) 

l [lu-alFe-('/2)u +ble-(l/2~(v+"~] } (43) c = l e x p { ~  

where a 1 =e -r/2, b I =(2/l)e -r/2+r'. From equations (36), (40), and (41), 
we get 

a 2 
41ogA=[lu+-~-M(u)+alble-iV/2N(u)+logL(v)] (44) 

where 

t)2 
N(u)= fe-lU( Fu--~F 

and L(v) is an arbitrary function of v. By suitable transformation the 
metric (1) reduces to the form 

,/2ex p 1 lu+aZM(u)+ ) dsZ=[L(v)] { 2 [  l alble-('/Z~'N(u)]} (dtz-dx2 

_exp[ lu + alF e -(t/2~u _bl e -(z/2)(v + u)] dy2 

-exp[ lU--alFe-(t/2)u + bl e-~t/2)'v+u)] dZ 2 (45) 

Case (a.2.2). Taking the lower sign in (37), We have 

4 /)2 p2 + - ( 4 6 )  

From equations (33), (34), (36) and (46) we have 
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where K is a constant. Integrating equations (47) we get 

I~=e xu+x' (48) 

G= 2eKv/2+X" (49) 

where K' and K" are constants. Hence from equations (33), (34), (48), and 
(49) we have 

1 ( 1 ~ K.  "2 B=~oeXpl~[Ku+poFe-  / +qoeK(V-"'/2]} (50) 

1 1 
C=-~oeXp{~[Ku-PoFe-KU/2-qoeK(V-")/2]) (51) 

wherep0 =e -K'/2, qo =(2/K) eK''-~'/2. From equations (36), (48), and (50), 
we get 

41ogA = Ku+ ~J(u)--poqoeK~/2H(u)+logQ(v) (52) 

where 

j ( u ) : f e _ K U ( E _  K )z -~F du, n ( u ) :  fe_~(U( F , K ~ F  )du 

and Q(v) is an arbitrary function of v. By suitable transformation the 
metric (1) reduces to the form 

-- exp [ Ku +Po Fe K./2 + qo e K(v -.)/2] dy2 

- e x p [ K . - p o f e  -~"/~ - qoe~:(~-~)/~] dZ ~ (53) 
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Case (b). Let us assume that B and C are functions of A. Hence from 
equations (12) and (14), respectively, we have 

[A v l C B ' - B C '  = -  

~_r + __d] = Auo 
- -  A - - - ~ .  

(54) 

(55) 

where a dash denotes differentiation with respect to A. Equating the 
left-hand side of equations (54) and (55), we get 

B=aoC1/(a "- 0 (56) 

where a 0 and a' are constants. From equations (54) and (55), we conclude 
that 

Auv 
A . A v  =~k(A) (57) 

From equation (57), we have 

A = A { a ( u ) + f l ( v ) }  = A ( x )  (58) 

where X = a + ]3. Hence from equations (57) and (58) we have 

A.v .4 
A . A v  - A2 (59) 

where a dot denotes differentiation with respect to X- From equations (55) 
and (59) we have 

B = M o / C  

where M 0 is a constant. From equations (56) and (60) we get 

B = aoq~ m 

c=eol-,. 

(60) 

(61) 

(62) 
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where 

ep=m'x+N' 

m'-  M~ 1 
- -  - -  m ~ -  - -  

a o a' 

and N'  is a constant. 
Equations (15), (61), and (62) lead to 
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a,, = flvv =b (64) 
2 #g O/u 

where b is a constant. From equations (63) and (64) we have 

[2m(m_l)_2_~ (..~ )+nep]=+2[m(m_l)_ 2 dp~__~(~ .d~)  ] 1  (65) 

where n=b/m'. Two cases arise: 

Case (b.1). Taking the upper sign in (65), we have 

A=exp[l(qdp2+nep+y)] (66) 

where q and "{ are constants. Also from equation (64) and q~=m'x+N' we 
have 

,~=K o -- (1/n)log(X 2 - T 2) (67) 

where 

u+n=u=�89 v+~=v=+(x-7 ~) 

I ~  (~ [ ~ 

m~ ~v~ 0~(~ ~)1 ~ 
(63) 

From equation (63) it is clear that (au,/a 2) and (~vv/t~v 2) both should be 
constant. In particular we assume that 



Cylindrical Symmetry 719 

and K 0, ,/, and ~ are constants. By suitable transformation the metric (1) 
reduces to the form 

ds 2 = e(q~,2 +n,l,+V)( d T  2 __ d X  2 ) 

-dp2m d y 2 - ~ 2 ( l - m )  dZ2  (68) 

where ~ is given by equation (67). 

Case (b.2). Taking the lower sign in (65), we get 

A=ephexp(�89 (69) 

where h and 3'0 are constants. By suitable transformation the metric (1) 
reduces to the form 

ds 2 = ~2h e [2re(m-- 1)(log if)2 +n~ +Yo] ( t i T  2 -  dX 2 ) 

__~2m d y 2 _  (~2(1--m) d Z  2 (70) 

3. SOME PHYSICAL AND GEOMETRICAL FEATURES 

The expressions for pressure (density), flow vector, and reality condi- 
tions for different cases are as follows. 

8~p=8~p 

( 4 P 2 - a  2) 

)k2A2 ( X 2 - -  T 2 ) 

Case (a.1.1). 

(71) 

A T  
- ( 7 2 )  

( X 2 - - T 2 )  1/2 

A X  
1) 4 -- (73) 

( X 2 - T 2 )  1/2 

The reality condition requires that 4 p 2 - a 2 > 0 .  The space-time represented 
by the model is in general of Petrov type I; however, for a = 0  it is of type D. 
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Case (a.l.2). 

8qrp = 8~rp 

_ 1 [ - ( 4 c +  1) 
( A I ~  2 [ ( X  2 - T 2 )  

(74) 

AX 
1) 1 = (75) 

[-(x2-r2)] 
AT 

v4--- (76) 
[ - ( x 2 - r 2 ) ]  '/2 

It is clear that the model is realistic only when X 2 -  T2<0. Hence P < 0 .  
The reality condition in this case requires that (4e+ I )>0.  For this model 
also space-time in general is of type I and it is type D for a = 0. 

Case (a.2.1). 

8~r O = 87rp 

= [  b~12 ]e  -'('~+u> (77) 
[1- J 

2al iv "2 ] 1/2 
vl =--A 1 - - ~ l l e  /1  (78) 

2 a l  iv~2 1/2 

The reality condition for this case is identically satisfied. The model 
represents a space-time which is in general of Petrov type I. However, for 
a I = 0  or F(u)=e t"/a+l~ it is of type II and for a 1 = 0  and L(v )=e  4tv+lo it is 
of type D. 

Case (a.2.2). This model turns out to be unrealistic. 

Case (b. 1). 

8Tro= 8~r p 

4[qeoZ +m(m--1)]  
m 

n2M2~2 ( X 2 --  T 2 ) 
(80) 
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A q~2 m(m_l)(X2+T2) ]1/2 
v,= ~/~ q~2+m(m-l) X2--T2 -1 (81) 

A qO2m ml (X2+ 2) ]lj2 
- -  + 1  (82)  qd?2 +m(m-- 1) X 2 T 2 

Since by (67) X 2 - T  2 > 0  the reality condition requires that qq,2 +m(m- 1) 
> 0. The space-time represented by the model is in general of Petrov type I. 
However, for m = �89 it is of type D. 

Case (b.2). 

8~rO= 8~rp 

_ 4 [ 3 r e ( m - - 1 ) - - q m ( m - 1 ) l o g ~ - h ]  (83) 

t~ 1 - -  

( ( )]1j2 A h+2m(rn--1)logd~-m(m-1) X 2 + T 2 - 1  

3m(m-1)-2m(m-1)logep-h XZ-T z 

(84) 

(85) 

The reality condition in this case is 

3m(m--1)--2m(m--1)log ~ - h > O  

The model represents a space-time, which is in general of Petrov type I. 
However, for m = �89 it is of type D. 

All the above models are rotating shearing expanding and nongeodetic 
in general. 
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